skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brewer, Christopher R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. X-ray photoelectron spectroscopy was used to analyze an authentic sample of (η4-cyclooctatetraene)Ru(CO)3 held at 173 K to prevent sublimation of the compound during measurement. This precursor has previously shown utility for photoassisted chemical vapor deposition of Ru species onto alkanethiolate self-assembled monolayers. Herein, we report that the Ru signals for the Ru(0) complex are at a higher binding energy than those of pure Ru metal. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract The fabrication of Ru nanostructures by focused electron beam induced deposition (FEBID) requires suitable precursor molecules and processes to obtain the pure metal. So far this is problematic because established organometallic Ru precursors contain large organic ligands, such as cyclopentadienyl anions, that tend to become embedded in the deposit during the FEBID process. Recently, (η3-C3H5)Ru(CO)3X (X = Cl, Br) has been proposed as an alternative precursor because CO can easily desorb under electron exposure. However, allyl and Cl ligands remain behind after electron irradiation and the removal of the halide requires extensive electron exposures. Auger electron spectroscopy is applied to demonstrate a postdeposition purification process in which NH3is used as a reactant that enhances the removal of Cl from deposits formed by electron irradiation of thin condensed layers of (η3-C3H5)Ru(CO)3Cl. The loss of CO from the precursor during electron-induced decomposition enables a reaction between NH3and the Cl ligands that produces HCl. The combined use of electron-stimulated desorption experiments and thermal desorption spectrometry further reveals that thermal reactions contribute to the loss of CO in the FEBID process but remove only minor amounts of the allyl and Cl ligands. 
    more » « less